PROJECT TITLE: **Electronic spectrum of channel Skyrmions in a Kondo insulator**

Yashar Komijani
College of Arts and Sciences
Department of Physics
425 Geophysics Department
komijani@uc.edu

Project Description

In this project we study the interior of defects in the channel orientation of a channel magnet. These channel-magnets appear as the low-energy phases of certain solid-state systems, called two-channel Kondo lattices. Due to coupling to conduction electrons, these defects can act as trapping potentials that are able to trap electrons. In this project we want to compute the electronic spectrum of a `skyrmion'' defect using a combination of numerical and analytical approaches. The problem can be reduced to some versions of a particle-in-a-box solution of the Schrodinger equation. The channel skyrmions are expected to realize fractionalized qubits, with potential applications in realizing topologically protected qubits for quantum computation.