PROJECT TITLE: Mechanochemistry and cellular processes

Ruxandra Dima  
Department of Chemistry  
304 Crosley  
Cincinnati, OH 45221  
Phone: (513) 556-3961  
Fax: (513) 556-9239  
Email: ruxandra.dima@uc.edu

Research in the Dima group focuses on understanding the role of various structural and cellular factors in the mechanical response of biological molecules ranging from small multi-domain proteins to large fibrillar assemblies that play crucial roles in fundamental processes such as the maintenance of the cell shape, cell mobility, cell-cell adhesion, wound closure, axonal growth, and cellular division (mitosis). A project for a REWU student is “Mechanochemistry and cellular processes”. Microtubules, the main component of the cell cytoskeleton, play fundamental roles in cellular processes ranging from cellular transport to mitosis. These roles are all intimately connected with microtubules' ability to depolymerize under controlled cellular conditions. This control is exerted by a large array of molecular machines (300 or so species). Recent experimental results strongly suggest that these protein cofactors work by converting chemical energy into mechanical work which is then applied to the microtubule polymer lattice, but little is known about the details of the process. The goal of this project is to determine the main types of interactions between molecular machines and microtubule filaments responsible for changes in the mechanics of these filaments upon the start of mitosis or during cell-cell adhesion processes. The WISE student will gain experience with bioinformatics methods and protein databases, learn to use simulation software to follow protein structure deformation under applied forces, and gain knowledge of current scientific literature on the subject.